Thursday, February 20, 2020

Automation and connectivity will enable the modern data center to extend to many more remote locations

https://www.vertiv.com/en-us/about/news-and-insights/articles/white-papers/the-modern-data-center/

Enterprise IT strategists are adapting to new demands from the industrial edge, 5G networks, and hybrid deployment models that will lead to more diverse data centers across more business settings. 

That’s the message from a broad new survey of 150 senior IT executives and data center managers on the future of the data center. IT leaders and engineers say they must transform their data centers to leverage the explosive growth of data coming from nearly every direction.

Yet, according to the Forbes-conducted survey, only a small percentage of businesses are ready for the decentralized and often small data centers that are needed to process and analyze data close to its source.

The next BriefingsDirect discussion on the latest data center strategies unpacks how more self-healing and automation will be increasingly required to manage such dispersed IT infrastructure and support increasingly hybrid deployment scenarios.

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.
Joining us to help learn more about how modern data centers will efficiently extend to the computing edge is Martin Olsen, Vice President of Global Edge and Integrated Solutions at VertivTM. The interview is conducted by Dana Gardner, Principal Analyst at Interarbor Solutions.


Here are some excerpts:

Gardner: Martin, what’s driving this movement away from mostly centralized IT infrastructure to a much more diverse topology and architecture?

https://www.linkedin.com/in/martintolsen/
Olsen: It’s an interesting question. The way I look at it is it’s about the cloud coming to you. It certainly seems that we are moving away from centralized IT or centralized locations where we process data. It’s now more about the cloud moving beyond that model.

We are on the front steps of a profound re-architecting of the Internet. Interestingly, there’s no finish line or prescribed recipe at this point. But we need to look at processing data very, very differently.

Over the past decade or more, IT has become an integral part of our businesses. And it’s more than just back-end applications like customer relationship management (CRM), enterprise resource planning (ERP), and material requirements planning (MRP) systems that service the organization. It’s also become an integrated fabric to how we conduct our businesses.

Meeting at the edge 

Gardner: Martin, Cisco predicts there will be 28.5 billion connected devices by 2022, and KPMG says 5G networks will carry 10,000 times more traffic than current 4G networks. We’re looking at an “unknown unknown” here when it comes to what to expect from the edge.

Olsen: Yes, that’s right, and the starting point is well beyond just content distribution networks (CDNs), it’s also about home automation, so accessing your home security cameras, adjusting the temperature, and other things around home automation.

That’s now moving to business automation, where we use compute and generate data to develop, design, manufacture, deploy, and operate our offerings to customers in a much better and differentiated fashion.

We’re also trying to improve the customer experience and how we interact with consumers. So billions of devices generating an unimaginable amount of data out there, is what has become known as edge computing, which means more computing done at or near the source of data.

In the past, we pushed that data out for consuming, but now it’s much more about data meets people, it’s data interacting with people in a distributed IT environment. And then, going beyond that is 5G.
We see a paradigm shift in the way we use IT. Take the amount of tech that goes into manufacturing. It's exploding, with tens of thousands of sensors deployed in just one facility to help dramatically improve productivity and drive efficiency into the business.

We see a paradigm shift in the way we use IT. Take, for example, the amount of tech that goes into a manufacturing facility, especially high-tech manufacturing. It’s exploding, with tens of thousands of sensors deployed in just one facility to help dramatically improve productivity, differentiate, and drive efficiency into the business.

Retail operations, from a compute standpoint, now require location services to offer a personalized experience in both the pre-shop phase as well as when you go into the store, and potentially in the post-shop, or follow-up experience.

We need to deliver these services quickly, and that requires lower latency and higher levels of bandwidth. It’s increasingly about pushing out from a central standpoint to a distributed fashion. We need to be rethinking how we deploy data centers. We need to think about the future and where these data centers are going to go. Where are we going to be processing all of this data?

Where does the data go? 

Gardner: The complexity over the past 10 years about factoring cloud, hybrid cloud, private cloud, and multi-cloud is now expanding back down into the organization -- whether it’s an environment for retail, home and consumer, and undoubtedly industrial and business-to-business. How are IT leaders and engineers going to update their data centers to exploit 5G and edge computing opportunities despite this complexity?

Olsen: You have to think about it differently around your physical infrastructure. You have the data aspect of where data moves and how you process it. That’s going to sit on physical infrastructure somewhere, and it’s going to need to be managed somehow.
Learn How Self-Healing and Automation
Help Manage Dispersed IT Infrastructure
You should, therefore, think differently about redesigning and deploying the physical infrastructure. How do you operate and manage it? The concept of a data center has to transform and evolve. It’s no longer just a big building. It could be 100, 1,000, or 10,000 smaller micro data centers. These small data centers are going to be located in places we had previously never imagined you would put in IT infrastructure.

And so, the reliance on onsite technical and operational expertise has to evolve, too. You won’t necessarily have that technical support, a data center engineer walking the halls of a massive data center all day, for example. You are going to be in places like some backroom of a retail store, a manufacturing facility, or the base of a cell tower. It could be highly inaccessible.

https://r-ddataproducts.com/4-reasons-to-buy-a-next-generation-console-management-solution/
You’ll need solutions that offer predictive operations, that have self-healing capabilities within them where they can fail in place but still operate as a function of built-in redundancy. You want to deploy solutions that have zero-touch provisioning, so you don’t have to go to every site to set it up and configure it. It needs to be done remotely and with automation built-in.

You should also consider where the applications are going to be hosted, and that’s not clear now. How much bandwidth is needed? It’s not clear. The demand is not clear at this point. As I said in the beginning, there is no finish line. There’s nothing that we can draw up and say, “This is what it’s going to be.” There is a version of it out there that’s currently focused around home automation and content distribution, and that’s just now moving to business automation, but again, not in any prescribed way yet.
You should consider where the applications are going to be hosted, and that's not clear. How much bandwidth is needed? It's not clear. There's nothing that we can draw up and say, "This is what it's going to be."

So we don’t want to adopt the “right” technologies now. And that becomes a real concern for your ability to compete over time because you can outdate yourself really, really quickly if you don’t make the right choices.

Gardner: When you face such change in your architecture and potential decentralization of micro data centers, you still need to focus on security, backup and recovery, and contingency plans for emergencies. We still need to be mission-critical, even though we are distributed. And, as you point out, many of these systems are going to be self-healing and self-configuring, which requires a different set of skills.

We have a people, process, and technology sea change coming. You at Vertiv wanted to find out what people in the field are thinking and how they are reacting to such change. Tell us about the Vertiv-Forbes survey, what you wanted to accomplish, and the top-line findings.

Survey says seek strategic change 

Olsen: We wanted to gauge the thinking and gain a sense of what the C-suite, the data center engineers, and the data center community were thinking as we face this new world of edge computing, 5G, and Internet of things (IoT). The top findings show a need for fundamental strategic change. We face a new mixture of architectures that is far more decentralized and with much more modularity, and that will mean a new way to manage and operate these data centers, too.

Based on the survey, 11 percent of C-suite executives don’t believe they are currently updated even to be ahead of current needs. They certainly don’t have the infrastructure ready for what’s needed in the future. It’s much less so with the data center engineers we polled, with only 1 percent of them believing they are ready. That means the vast majority, 99 percent, don’t believe they have the right infrastructure.

https://www.briefingsdirectblog.com/2019/11/how-smart-it-infrastructure-has-evolved.html

There is also broad agreement that security and bandwidth need to be updated. Concern about security is a big thing. We know from experience that security concerns have stunted remote monitoring adoption. But the sheer quantity of disparate sites required for edge computing makes it a necessity to access, assess, and potentially reconfigure and remotely fix problems through remote monitoring and access.

Vertiv is driving a high level of configurability of instruments so you can take our components and products and put them together in a multitude of different ways to provide the utmost flexibility when you deploy. We are driving modularized solutions in terms of both modular data center and modularity in terms of how it all goes together onsite. And we are adding much more intelligence into our offerings for the remote sites, as well as the connectivity to be able to access, assess, and optimize these systems remotely.

Gardner: Martin, did the survey indicate whether the IT leaders in the field are anticipating or demanding such self-configuration technologies?

Olsen: Some 24 percent of the executives reported that they expect more than 50 percent of data centers will be self-configuring or have zero-touch provisioning by 2025. And about one-third of them say that more than 50 percent of their data centers will be self-healing by then, too.


That’s not to say that they have all of the answers. That’s their prediction and their responses to what’s going to be needed to solve their needs. So, 29 percent of engineers say they don’t know what percentage of the data centers will be self-configuring and self-healing, but there is an overwhelming agreement that it is a capability they need to be thinking about. Vertiv will develop and engineer our offerings going forward based on what’s going to be put in place out there.

Gardner: So there may be more potential points of failure, but there is going to be a whole new set of technologies designed to ameliorate problems, automate, and allow the remote capability to fix things as needed. Tell us about the proper balance between automation and remote servicing. How might they work together?

Make intelligent choices before you act 

Olsen: First of all, it’s not just a physical infrastructure problem. It has everything to do with the data and workloads as well. They go hand-in-hand; it certainly requires a partnership, a team of people and organizations that come together and help.

Driving intelligence into our products and taking that data off of our systems as they operate provides actionable data. You can then offer that analysis up to non-technical people on how to rectify situations and to make changes.
Learn How Self-Healing and Automation
Help Manage Dispersed IT Infrastructure
These solutions also need to communicate with the hypervisor platforms -- whether that’s via traditional virtualization or containerization. Fundamentally, you need to be able to decide how and when to move your applications and workloads to the optimal points on the network.

We are trying to alleviate that challenge by making our offerings more intelligent and offering up actionable alarms, warnings, and recommendations to weigh choices across an overall platform. Again, it takes a partnership with the other vendors and services companies. It’s not just from a physical infrastructure standpoint.

https://www.vertiv.com/en-us/
Gardner: And when that ecosystem comes together, you can provide a constellation of data centers working in harmony to deliver services from the edge to the consumer and back to the data centers. And when you can do that around and around, like a circuit, great things can happen.

So let’s ground this, if we can, to the business reality. We are going to enable entirely new business models, with entirely new capabilities. Are there examples of how this might work across different verticals? Can you illustrate -- when you have constructed decentralized data centers properly -- the business payoffs?

Improving remote results 

Olsen: As you point out, it’s all about the business outcomes we can deliver in the field. Take healthcare. There is a shortage of healthcare expertise in rural areas. Being able to offer specialized doctors and advanced healthcare in places that you wouldn’t imagine today requires a new level of compute and network that delivers low latency all the way to the endpoints.

Imagine a truck fitted with a medical imaging suite. That’s going to have to operate somewhat autonomously. The 5G connectivity becomes essential as you process those images. They have to be graphically loaded into a central repository to be accessed by specialists around the world who read the images.

That requires two-way connectivity. A huge amount of data from these images needs to move to provide that higher level of healthcare and a better patient experience in places where we couldn’t do it before.
There will need to be aggregation points throughout the network. You will need compute to reside at multiple levels of the infrastructure. Places like the base of a cell tower could become the focal point.

So 5G plays into that, but it also means being able to process and analyze some of the data locally. There need to be aggregation points throughout the network. You will need compute to reside at multiple levels of the infrastructure. Places like the base of a cell tower could become a focal point for this.

You can imagine having four, five, six times as much compute power sitting in these places along a remote highway that is not easily accessible. So, having technical staff be able to troubleshoot those becomes vital.

There are also uses cases that will use augmented reality (AR). Think of technicians in the field being able to use AR when they dispatch a field engineer to troubleshoot a system somewhere. We can make them as effective as possible, and access expertise from around the world to help troubleshoot these sites. AR becomes a massive part of this because you can overlay what the onsite people are seeing in through 3D glasses or virtual reality glasses and help them through troubleshooting, fixing, and optimizing whatever system they might be working on.

Again, that requires compute right at the endpoint device. It requires aggregation points and connectivity all the way back to the cloud. So, it requires a complex network working together. The more advanced these use cases become -- the more remote locations we have to think through -- we are going to have to deploy infrastructure and access it as well.

Gardner: Martin, when I listen to you describe these different types of data centers with increased complexity and capabilities in the networks, it sounds expensive. But are there efficiencies you gain when you have a comprehensive design across all of the parts of the ecosystem? Are there mitigating factors that help with the total cost?

Olsen: Yes, as the net footprint of compute increases, I don’t think the cost is linear with that. We have proven that with the Vertiv technologies we have developed and already deployed. As the compute footprint increases, there is a fundamental need for driving energy efficiency into the infrastructure. That comes in the form of using more efficient ways of cooling the IT infrastructure, and we have several options around that.

It’s also from new battery technologies. You start thinking about lithium-ion batteries, which Vertiv has solutions around. Lithium-ion batteries make the solution far more resilient, more compact, and it needs much less maintenance when it sits out there.
Learn How Self-Healing and Automation
Help Manage Dispersed IT Infrastructure
So, the amount of infrastructure that’s going to go out there will certainly increase. We don’t think it’s necessarily going to be linear in terms of the cost when you pay close attention to how, as an organization, you deploy edge computing. By considering these new technologies, that’s going to help drive energy efficiency, for example.

Gardner: Were there any insights from the Forbes survey that went to the cost equation? How do the IT executives expect this to shake out?

Energy efficiency partnerships 

Olsen: We found that 71 percent of the C-suite executives said that future data centers will reduce costs. That speaks to both the fact that there will be more infrastructure out there, but that it will be more energy efficient in how it’s run.

It’s also going to reduce the cost of the overall business. Going back to the original discussion around the business outcomes, deploying infrastructure in all these different places will help drive down the overall cost of doing business.

It’s an energy efficiency play both from a very fundamental standpoint in the way you simply power and cool the equipment, and overall, as a business, in the way you deliver improved customer experience and how you deliver products and services for your customers.

https://www.vertiv.com/en-us/services-catalog/maintenance-services/remote-services/life-services/

Gardner: How do organizations prepare themselves to get out in front of this? As we indicated from the survey findings, not that many say they are prepared. What should they be doing now to change that?

Olsen: Yes, most organizations are unprepared for the future -- and not necessarily even in agreement on the challenges. A very small percentage of the respondents, 11 percent of executives believe that their data centers are ahead of current needs, even less so for the data center engineers. Only 44 percent of them say that their data centers are updated regularly. Only 29 percent say their data centers even meet current needs.

To prepare going forward, they should seek partnerships. Get the data centers upgraded, but also think through and understand how organizations like Vertiv have decades of experience in designing, deploying, and operating large data centers from a physical infrastructure standpoint. We use that experience and knowledge base for the data center of tomorrow. It can be a single IT rack or two going to any location.
We take all of our learning and experience and drive it into what becomes the smallest common denominator data center, which could just be a rack. These are modular solutions that are intelligent and can be optimized remotely.

We take all of that learning and experience and drive it into what becomes the smallest common denominator data center, which could just be a rack. So it’s about working with someone who has that experience, already has the data, and has the offerings of configurable, modular solutions that are intelligent and provide accessibility to access, assess, and optimize remotely. And it’s about managing the data that comes off these systems and extracts the value out of it, the way we do that with some of our offering around Vertiv LIFE Services, with very prescriptive, actionable alarms and alerts that we send from our systems.

Very few organizations can do this on their own. It’s about the ecosystem, working with companies like Vertiv, working closely with our strategic partners on the IT side, storage networks, and all the way through to the applications that make it all work in unison.

Think through how to efficiently add compute capacity across all of these new locations, what those new locations should look like, and what the requirements are from a security standpoint.


There is a resiliency aspect to it as well. In harsh environments such as high-tech manufacturing, you need to ensure the infrastructure is scalable and minimizes capital expenditure spending. The modular approach allows building for a future that may be somewhat unknown at this point. Deploying modular systems that you can easily augment and add capacity or redundancy to over time -- and that operate via robust remote management platforms -- are some of the things you want to be thinking about.

Gardner: This is one of the very few empirical edge computing research assets that I have come across, the Vertiv and Forbes collaboration survey. Where can people find out more information about it if they want more details? How is this going to be available?
Learn How Self-Healing and Automation
Help Manage Dispersed IT Infrastructure
Olsen: We want to make this available to everybody to review. In the interest of sharing the knowledge about this new frontier, the new world of edge computing, we will absolutely be making this research and study available. I want to encourage people to go visit vertiv.com to find more information and download the research results.
 
Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy. Sponsor: Vertiv.

Friday, February 14, 2020

How Intility uses HPE Primera intelligent storage to move to 100 percent data uptime

https://www.hpe.com/us/en/newsroom/blog-post/2018/12/intelligent-storage-unlocking-your-datas-potential.html

The next BriefingsDirect intelligent storage innovation discussion explores how Norway-based Intility sought and found the cutting edge of intelligent storage

Stay with us as we learn how this leading managed platform services provider improved uptime -- on the road to 100 percent -- and reduced complexity for its end users.

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.


To hear more about the latest in intelligent storage strategies that lead to better business outcomes, please welcome Knut Erik Raanæs, Chief Infrastructure Officer at Intility in Oslo, Norway. The interview is conducted by Dana Gardner, Principal Analyst at Interarbor Solutions.

Here are some excerpts:


Gardner: Knut, what trends and business requirements have been driving your need for Intility to be an early adopter of intelligent storage technology?

https://www.hpe.com/us/en/storage/hpe-primera.htmlRaanæs: For us, it is important to have good storage systems that are easy to operate to lower our management costs. At the same time, it gives great uptime for our customers.

Gardner: You are dealing not only with quality of service requirements; you also have very rapid growth. How does intelligent storage help you manage such rapid growth?

Raanæs: By easily having performance trends shown so we can spot when we are running full. If that happens, we can react before we run out of capacity.

Gardner: As a managed cloud service provider, it’s important for you to have strict service level agreements (SLAs) met. Why are the requirements of cloud services particularly important when it comes to the quality of storage services?

Intelligent, worry-free storage 

Raanæs
Raanæs: It’s very important to have good quality of service separation because we have lots of different kinds of customers. We don’t want to have the noise-enabled problem where one customer affects another customer -- or even the virtual machine (VM) of one customer affects another VM. The applications should work independently of each other.

That’s why we have been using Hewlett Packard Enterprise (HPE) Nimble Storage. Our quality of service would be much worse at the VM disk level. It’s very good technology.

Gardner: Tell us about Intility, your size, scope, how long you have been around, and some of the major services you provide.

Raanæs: Intility was founded in 2000. We have always been focused on being a managed cloud service provider. From the start, there have been central shared services, a central platform, where we on-boarded customers and they shared email systems, and Microsoft Active Directory, along with all the application backup systems.

Over the last few years, the public cloud has made our customers more open to cloud solutions in general, and to not having servers in the local on-premises room at the office. We have now grown to more than 35,000 users, spread over 2,000 locations across 43 countries. We have 11 shared services datacenters, and we also have customers with edge location deployments due to high latency or unstable Internet connections. They need to have the data close to them.

Gardner: What is required when it comes to solving those edge storage needs?
Customers often want inexpensive solutions. We have to look at different solutions that give the best stability but don't cost too much. And we need remote management of the solution.

Raanæs: Those customers often want inexpensive solutions. So we have to look at different solutions and pick the one that gives the best stability but that also doesn’t cost too much. We also need easy remote management of the solution, without being physically present.

Gardner: At Intility, even though you’re providing infrastructure-as-a-services (IaaS), you are also providing a digital transformation benefit. You’re helping your customers mature and better manage their complexity as well as difficulty in finding skills. How does intelligent IaaS translate into digital transformation?

Raanæs: When we meet with potential customers, we focus on taking away concerns about infrastructure. They are just going to leave that part to us. The IT people can then just move up in [creating value] and focus on digitalizing the business for their customers.

Gardner: Of course, cloud-based services require overcoming challenges with security, integration, user access management, and single sign on. How are those higher-level services impacted by the need for intelligent storage?

Smart storage security

Raanæs: With intelligent storage, we can focus on having our security operations center (SOC) monitor responses the instant they see them on our platforms. We can keep a keen eye on our storage systems to make sure that nothing ever happens on the storage. That can be an early signal of something happening.

https://www.intility.no/en/Gardner: Please describe the journey you have been on when it comes to storage. What systems you have been using? Why have intelligence, insights, and analysis capabilities been part of your adoption?

Raanæs: We started back in 2013 with HPE 3PAR arrays. Before that we used IBM storage. We had multiple single-Redundant Array of Inexpensive Disks (RAID) sets and had to manage hotspots ourselves, so by moving even one VM we had to try and balance it out manually.

In 2013, when we went with the first 3PAR array, we had huge benefits. That 3PAR array used less space and at the same time we didn’t have to manage or even out the hotspots. 3PAR and its active controllers were a great plus for us for many years.


But about one-and-a-half years ago, we started using HPE Nimble arrays, primarily due to the needs of VMware vCenter and quality of service requirements. Also, with the Nimble arrays, the InfoSight technology was quite nice.

Gardner: Right. And, of course, HPE is moving that InfoSight technology into more areas of their infrastructure. How important has InfoSight been for you?

Raanæs: It’s been quite useful. We had some systems that required us to use other third-party applications to give an expansive view of the performance of the environment. But those applications were quite expensive and had functionality that we really didn’t need. So at first we pulled data from the vCenter database and visualized the data. That was a huge start for us. But when InfoSight came along later it gave us even more information about the environment.

Gardner: I understand you are now also a beta customer for HPE Primera storage. Tell us about your experience with Primera. How does that move the needle forward for you?

For 100 percent uptime 

Raanæs: Yes, we have been beta testing Primera, and it has been quite interesting. It was easy to set up. I think maybe 20 minutes from getting it into the rack and just clicking through the setup. It was then operational and we could start provisioning storage to the whole system.

And with Primera, HPE is going in with 100 percent uptime guarantee. Of course, I still expect to deal with some rare incidences or outages, but it’s nice to see a company that’s willing to put their money where their mouth is, and say, “Okay, if there is any downtime or an outage happens, we are going to give you something back for it.”

Gardner: Do you expect to put HPE Primera into production soon? How would you use it first?
With Primera, HPE is going in with 100 percent uptime guarantee. It's nice to see a company that's willing to put their money where their mouth is.

Raanæs: So we are currently waiting for our next software upgrade for HPE Primera. Then we are then going to look at putting it into production. The use case is going to be general storage because we have so much more storage demand and need to try to keep it consistent, to make it easier to manage.

Gardner: And do you expect to be able to pass along these benefits of speed of deployment and 100 percent uptime to your end users? How do you think this will improve your ability to deliver SLAs and better business outcomes?

Raanæs: Yes, our end users are going to be quite happy with 100 percent uptime. No one likes downtime -- not us, not our customers. And HPE Primera’s speed of deployment means that we have more time to manage other parts of the platform and to get better service out to the customers.

https://www.hpe.com/us/en/storage/hpe-primera.html
Gardner: I know it’s still early and you are still in the proof of concept stage, but how about the economics? Do you expect that having such high levels of advanced intelligence across storage will translate into your ability to do more for less, and perhaps pass some of those savings on?

Raanæs: Yes, I expect that’s going to be quite beneficial for us. Because we are based in Norway, one of our largest expenses is for people. So, the more we can automate by using the systems, the better. I am really looking forward to seeing this improve and getting easier to manage systems and analyze performance within a few hours.

Gardner: On that issue of management, have you been able to use HPE Primera to the degree where you have been able to evaluate its ease of management? How beneficial is that?

Work smarter, not harder 

Raanæs: Yes, the ease of management was quite nice. With Primera you can do the service upgrade more easily. So with 3PAR, we had to schedule an upgrade with the upgrade team at HPE and had to wait a few weeks. Now we can just do the upgrade ourselves.

And hardware replacements are easier, too. We can just get a nice PDF showing you how to replace the parts. So it’s also quite nice.

I also like the part of the service processor in 3PAR that’s now just garnered with Primera; it’s in with the array. So, that’s one less thing to worry about managing.

https://www.hpe.com/us/en/storage/hpe-primera.html

Gardner: Knut, as we look to the future, other technologies are evolving across the infrastructure scene. When combined with something like HPE Primera, is there a whole greater than the sum of the parts? How will you will be able to use more intelligence broadly and leverage more of this opportunity for simplicity and passing that onto your end users?

Raanæs: I’m hoping that more will come in the future. We are also looking at non-volatile memory express (NVMe). That’s a caching solution and it’s ready to be built into HPE Primera, too. So that’s also quite interesting to see what the future will bring there.


Tuesday, February 4, 2020

A new status quo for data centers--seamless communication from core to cloud to edge

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/

As 2020 ushers in a new decade, the forces shaping data center decisions are extending compute resources to new places

With the challenging goals of speed, agility, and efficiency, enterprises and service providers alike will be seeking new balance between the need for low latency and optimal utilization of workload placement. Hybrid models will therefore include more distributed, confined, and modular data centers at or near the edge.

These are but some of a few top-line predictions on the future state of the modern data center design. The next BriefingsDirect data center strategies discussion with two leading IT and critical infrastructure executives examines how these new data center variations nonetheless must also interoperate seamlessly from core to cloud to edge. 

Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy.


Here to help us learn more about the new state of extensible data centers is Peter Panfil, Vice President of Global Power at VertivTM, and Steve Madara, Vice President of Global Thermal at Vertiv. The discussion is moderated by Dana Gardner, Principal Analyst at Interarbor Solutions.

Here are some excerpts:

Gardner: The world is rapidly changing in 2020. Organizations are moving past the debate around hybrid deployments, from on-premises to public clouds. Why do we need to also think about IT architectures and hybrid computing differently?
https://www.linkedin.com/in/peter-panfil-03197766/
Panfil

Panfil: We noticed a trend at Vertiv in our customer base. That trend is toward a new generation of data centers. We have been living with distributed IT, client-server data centers moving to cloud, either a public cloud or a private cloud.

But what we are seeing is the evolution of an edge-to-core, near-real-time data center generation. And it’s being driven by devices everywhere, the “connected-all-the-time” model that all of us seem to be going to.

And so, when you are in a near-real-time world, you have to have infrastructure that supports your near-real-time applications. And that is what the technology folks are facing. I refer to it as a pack of dogs chasing them -- the amount of data that’s being generated, the applications running remotely, and the demand for availability, low latency, and driving cost down as much as you possibly can. This is what’s changing how they approach their critical infrastructure space.

Gardner: And so, a new equilibrium is emerging. How is this different from the past?

Madara: If we go back 20 years, everything was centralized at enterprise data centers. Then we decided to move to decentralized, and then back to centralized. We saw a move to colocation as people decided that’s where they could get lower cost to run their apps. And then things went to the cloud, as Peter said earlier.

https://www.linkedin.com/in/steve-madara-80ba1214/
Madara
And now, we have a huge number of devices connected locally. Cisco says by late 2020 that it’s going to have 23 billion connected devices, and over half of those are going to be machine-to-machine communications, which, as Peter mentioned earlier, the latency is going to be very, very critical.

An interesting read is Michael Lewis’s book Flash Boys about the arbitrage that’s taking place with the low latency that you have in stock market trading. I think we are going to see more of that moving to the edge. The edge is more like a smart rack or smart row deployment in an existing facility. It’s going to be multi-tenant, because it’s going to be able to be throughout large cities. There could be 20 or 30 of these edge data center sites hosting different applications for customers.

This move to the edge is also going to provide IT resources in a lot of underserved markets that don’t yet have pervasive compute, especially in emerging countries.

Gardner: Why is speed so important? We have been talking about this now for years, but it seems like the need for speed to market and speed to value continues to ramp up. What’s driving that?

Moving to the edge, with momentum 

Panfil: There is more than one kind of speed. There is speed of response of the application, that’s something that all of us demand -- speed of response of the applications. I have to have low latency in the transactions I am performing with my data or with my applications. So there is the speed of the actual data being transmitted.

There is also speed of deployment. When Steve talked earlier about centralized cloud deployments in these core data centers, your data might be going over a significant distance, hopping along the way. Well, if you can’t live with that latency that gets inserted, then you have to take the IT application and put it closer to the source and consumer of the data. So there is a speed of deployment, from core to edge, that happens.

And the third type of speed is you have to have low-first-cost, high-asset-utilization, and rapid-scalability. So that’s a speed of infrastructure adaptation to what the demands for the IT applications are.
So when we mean speed, I often say it's speed, speed, and speed. First it's the data speed, then deploying fast, and then at scale at business-friendly cost and reliability.

So when we mean speed, I often say it’s speed, speed, and speed. First, it’s the data IT. Once I have data IT speed, how did I achieve that? l did it by deploying fast, in the scale needed for the applications, and lastly at a cost and reliability that makes it tolerable for the businesses.

Gardner: So I guess it’s speed-cubed, right?

Panfil: At least, speed-cubed. Steve, if we had a nickel for every time one of our customers said “speed,” we wouldn’t have to work anymore. They are consumed with the different speeds that they have to deal with -- and it’s really the demands of their customers.

Gardner: Vertiv for years has been looking at the data center of the future and making some predictions around what to expect. You have been rather prescient. To continue, you have now identified several areas for 2020, too. Let’s go through those trends.

Steve, Vertiv predicts that “hybrid architectures will go mainstream.” Why did you identify that, and what do you mean?

The future goes hybrid 

Madara: If we look at the history of going from centralized to decentralized, and going to colocation and cloud applications, it shows the ongoing evolution of Internet of Things (IoT) sensors, 5G networks, smart cities, autonomous cars, and how more and more of that data is generated and will need to be processed locally. A lot of that is from machine-to-machine applications.

https://www.vertiv.com/
So when we now talk about hybrid, we have to get very, very close to the source, as far as the processing is concerned. That’s going to be a large-scale evolution that’s going to drive the need for hybrid applications. There is going to be processing at the edge as well as centralized applications -- whether it’s in a cloud or hosted in colocation-based applications.

Panfil: Steve, you and I both came up through the ranks. I remember when the data closet down the hall was basically a communications matrix. Its intent was to get communications from wherever we were to wherever our core data center was.

Well, the cloud is not going away. Number two, enterprise IT is not going away. What the enterprise is saying is, “Okay, I am going to take my secret sauce and I am going to put it in an edge data center. I am going to put the compute power as close to my consumer of that data and that application as I possibly can. And then I am going to figure out where the rest of it’s going to go.”
If I can live with the latency I get out of a core data center, I am going to stay in the cloud. If I can't, I might even break up my enterprise data center into small or micro data centers that give me even better responses.

“If I can live with the latency I get out of a core data center, I am going to stay in the cloud. If I can’t, I might even break up my enterprise data center into small or micro data centers that give me even better responses.”

Dana, it’s interesting, there was a recent wholesale market summary published that said the difference between the smaller and the larger wholesale deals widened. So what that says is the large wholesale deals are getting bigger, the small wholesale deals are getting smaller, and that the enterprise-based demand, in deployments under 600 kilowatts, is focused on low-latency and multi-cloud access.

That tells us that our customers, the users of that critical space, are trying to place their IT appliances as close as they can to their customers, eliminating the latency, responding with speed, and then figuring out how to mesh that edge deployment with their core strategy.

Gardner: Our second trend gets back to the speed-cubed notion. I have heard people describe this as a new arms race, because while it might be difficult to differentiate yourself when everyone is using the same public cloud services, you can really differentiate yourself on how well you can conduct yourself at speed.

What kinds of capabilities across your technologies will make differentiation around speed work to an advantage as a company?

The need for speed 

Panfil: Well, I was with an analyst recently, and I said the new reality is not that the big will eat the small -- it’s that the fast will eat the slow. And any advantage that you can get in speed of applications, speed of deployment, deploying those IT assets -- or morphing the data center infrastructure or critical space infrastructure – helps improve capital efficiency. What many customers tell us is that they have to shorten the period of time between deciding to spend money on IT assets and the time that those asset start creating revenue.

They want help being creative in lowering their first-cost, in increasing asset utilization, and in maintaining reliability. If, holy cow, my application goes down, I am out of business. And then they want to figure out how to manage things like supply chains and forecasting, which is difficult to do in this market, and to help them be as responsive as they can to their customers.

Madara: Forecasting and understanding the new applications -- whether it’s artificial intelligence (AI) or 5G -- the CIOs need to decide where they need to put those applications whether they should be in the cloud or at the edge. Technology is changing so fast that nobody can predict far out into the future as far as to where I will need that capacity and what type of capacity I will need.

So, it comes down to being able to put that capacity in the place where I need it, right when I need it, and not too far in advance. Again, I don’t want to spend the capital, because I may put it in the wrong place. So it’s got to be about tying the demand with the supply, and that’s what’s key as far as the infrastructure.

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/

And the other element I see is technology is changing fast, even on the infrastructure side. For our equipment, we are constantly making improvements every day, making it more efficient, lower cost, and with more capability. And if you put capacity in today that you don’t need for a year or two down the road, you are not taking advantage of the latest, greatest technology. So really it’s coupling the demand to the actual supply of the infrastructure -- and that’s what’s key.

Another consideration is that many of these large companies, especially in the colocation market, have their financial structure as a real estate investment trust (REIT). As a result, they need to tie revenue with expenses tighter and tighter, along with capital spending.

Panfil: That’s a good point, Steve. We redesigned our entire large power portfolio at Vertiv specifically to be able to address this demand.

In previous generations, for example, the uninterruptible power supply (UPS) was built as a complete UPS. The new generation is built as a power converter, plus an I/O section, plus an interface section that can be rapidly configured to the customer, or, in some cases, put into a vendor-managed inventory program. This approach allows us to respond to the market and customers quicker.

We were forced to change our business model in such a way that we can respond in real time to these kinds of capacity-demand changes.

Madara: And to add to that, we have to put together more and more modules and solutions where we are bundling the equipment to deliver it faster, so that you don’t have to do testing on site or assembly on site. Again, we are putting together solutions that help the end-user address the speed of the construction of the infrastructure.

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/

I also think that this ties into the relationship that the person who owns the infrastructure has with their supplier base. Those relationships have to build in, as Peter mentioned earlier, the ability to do stocking of inventory, of having parts available on-site to go fast.

Gardner: In summary so far, we have this need for speed across multiple dimensions. We are looking at more hybrid architectures, up and down the scale -- from edge to core, on-premises to the cloud. And we are also looking at crunching more data and making real-time analytics part of that speed advantage. That means being able to have intelligence brought to bear on our business decisions and making that as fast as possible.

So what’s going on now with the analytics efficiency trend? Even if average rack density remains static due to a lack of space, how will such IT developments as high performance computing (HPC) help make this analysis equation work to the business outcome’s advantage?

High-performance, high-density pods 

Madara: The development of AI applications, machine learning (ML), and what could be called deep learning are evolving. Many applications are requiring these HPC systems. We see this in the areas of defense, gaming, the banking industry, and people doing advanced analytics and tying it to a lot of the sensor data we talked about for manufacturing.

It’s not yet widespread, it’s not across the whole enterprise or the entire data center, and these are often unique applications. What I hear in large data centers, especially from the banks, is that they will need to put these AI applications up on 30-, 40-, 50- or 60-kW racks -- but they only have three or four of these racks in the whole data center.
The end-user will need to decide how to tune or adjust facilities to accommodate these small but growing pods of high-density compute. They are going to need to decide how they are going to facilitize for that type of equipment.

The end-user will need to decide how to tune or adjust facilities to accommodate these small but growing pods of high-density compute. And if they are in their own facility, if it’s an enterprise that has its own data center, they will need to decide how they are going to facilitize for that type of equipment.

A lot of the colocation hosting facilities have customers saying, “Hey, I am going to be bringing in the future a couple of racks that are very high density. A lot of these multi-tenant data centers are saying, ‘Oh, how do I provision for these, because my data center was laid out for this average of maybe 8 kW per rack? How do I manage that, especially for data centers that didn’t previously have chilled water to provide liquid to the rack?’”

We are now seeing a need to provide chilled water cooling that would go to a rear door heat exchanger on the back of the rack. It could be chilled water that would go to a rack for chip cooling applications. And again, it’s not the whole data center; it’s a small segment of the data center. But it raises questions of how I do that without overkill on the infrastructure needed.


Gardner: Steve, do you expect those small pods of HPC in the data center to make their way out to the edge when people do more data crunching for the low-latency requirements, where you can’t move the data to a data center? Do you expect to have this trend grow more distributed?

Madara: Yes, I expect this will be for more than the enterprise data center and cloud data centers. I think you are going to see analytics applications developed that are going to be out at the edge because of the requirements for latency.

When you think about the autonomous car; none of us know what's going to be required there for that high-performance processing, but I would expect there is going to be a need for that down at the edge.

Gardner: Peter, looking at the power side of things when we look at the batteries that help UPS and systems remain mission-critical regardless of external factors, what’s going on with battery technology? How will we be using batteries differently in the modern data center?

Battery-powered savings 

Panfil: That’s a great question. Battery technology has been evolving at an incredibly fast rate. It’s being driven by the electric vehicles. That growth is bringing to the market batteries that have a size and weight advantage. You can’t put a big, heavy pack of batteries in a car and hope to have it perform well.

It also gives a long-life expectation. So data centers used to have to decide between long-life, high-maintenance, wet cells and the shorter-life, high-maintenance, valve-regulated lead-acid (VRLA) batteries. In step with the lithium-ion batteries (LIBs) and thin plate pure lead (TPPL) batteries, what’s happened is the total cost of ownership (TCO) has started to become very advantageous for these batteries.

Our sales leadership lead sent me the most recent TCO between either TPPL or LIBs versus traditional VRLA batteries, and the TCO is a winner for the LIBs and the TPPL batteries. In some cases, over a 10-year period, the TCO is a factor of two lower for LIB and TPPL.

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/

Where in the cloud generation of data centers was all about lowest first cost, in this edge-to-core mentality of data centers, it’s about TCO. There are other levers that they can start to play with, too.

So, for example, they have life cycle and operating temperature variables. That used to be a real limitation. Nobody in the data center wanted their systems to go on batteries. They tried everything they could to not have their systems go on the battery because of the potential for shortening the life of their batteries or causing an outage.

Today we are developing IT systems infrastructure that takes advantage of not only LIBs, but also pure lead batteries that can increase the number of [discharge/recharge] cycles. Once you increase the number of cycles, you can think about deploying smart power configurations. That means using batteries not only in the critical infrastructure for a very short period of time when the power grid utility fails, but to use that in critical infrastructure to help offset cost.

If I can reduce utility use at peak demand periods, for example, or I can reduce stress on the grid at specified times, then batteries are not only a reliability play – they are also a revenue-offset play. And so, we’re seeing more folks talking to us about how they can apply these new energy storage technologies to change the way they think about using their critical space.

Also, folks used to think that the longer the battery time, the better off they were because it gave more time to react to issues. Now, folks know what they are doing, they are going with runtimes that are tuned to their operations team’s capabilities. So, if my operations team can do a hot swap over an IT application -- either to a backup critical space application or to a redundant data center -- then all of a sudden, I don’t need 5 to 12 minutes of runtime, I just need the bridge time. I might only need 60 to 120 seconds.

Now, if I can have these battery times tuned to the operations’ capabilities -- and I can use the batteries more often or in higher temperature applications -- then I can really start to impact my TCO and make it very, very cost-effective.

Gardner: It’s interesting; there is almost a power analog to hybrid computing. We can either go to the cloud or the grid, or we can go to on-premises or the battery. Then we can start to mix and match intelligently. That’s really exciting. How does lessening dependence on the grid impact issues such as sustainability and conserving energy?

Sustainability surges forward 

Panfil: We are having such conversations with our key accounts virtually every day. What they are saying is, “I am eventually not going to make smoke and steam. I want to limit the number of times my system goes on a generator. So, I might put in more batteries, more LIBs or TPPL batteries, in certain applications because if my TCO is half the amount of the old way, I could potentially put in twice as much, and have the same cost basis and get that economic benefit.”

And so from a sustainability perspective, they are saying, “Okay, I might need at some point in the useful life of that critical space to not draw what I think I need to draw from my utility. I can limit the amount of power I draw from that utility.”
I love all of you out there in data center design, but most of them are designed for peak useage. These changes allow them to design more for the norm of the requirements. That means they can put in less infrastructure, less battery, to right-size their generators; same thing on cooling.

This is not a criticism, I love all of you out there in data center design, but most of them are designed for peak usage. So what these changes allow them to do is to design more for the norm of the requirements. That means they can put in less infrastructure, the potential to put in less battery. They have the potential to right-size their generators; same thing on the cooling side, to right-size the cooling to what they need and not for the extremes of what that data center is going to see.

From a sustainability perspective, we used to talk about the glass as half-full or half-empty. Now, we say there is too much of a glass. Let’s right-size the glass itself, and then all of the other things you have to do in support of that infrastructure are reduced.

Madara: As we look at the edge applications, many will not have backup generators. We will have alternate energy sources, and we will probably be taking more hits to the batteries. Is the LIB the better solution for that?

Panfil: Yes, Steve, it sure is. We will see customers with an expectation of sustainability, a path to an energy source that is not fossil fuel-based. That could be a renewable energy source. We might not be able to deploy that today, but they can now deploy what I call foundational technologies that allow them to take advantage of it. If I can have a LIB, for example, that stores excess energy and allows me to absorb energy when I’m creating more than I need -- then I can consume that energy on the other side. It’s better for everybody.

Gardner: We are entering an era where we have the agility to optimize utilization and reduce our total costs. The thing is that it varies from region to region. There are some areas where compliance is a top requirement. There are others where energy issues are a top requirement because of cost.

What’s going on in terms of global cross-pollination? Are we seeing different markets react to their power and thermal needs in different ways? How can we learn from that?

Global differences, normalized 

Madara: If you look at the size of data centers around the world, the data centers in the U.S. are generally much larger than in Europe. And what’s in Europe is much larger than what we have in other developed countries. So, there are a couple of things, as you mentioned, energy availability, cost of energy, the size of the market and the users that it serves. We may be looking at more edge data centers in very underserved markets that have been in underdeveloped countries.

So, you are going to see the size of the data center and the technology used potentially different to better fit needs of the specific markets and applications. Across the globe, certain regions will have different requirements with regard to security and sustainability.

Even though we have these potential differences, we can meet the end-user needs to right-size the IT resources in that region. We are all more common than we are different in many respects. We all have needs for security, we all have needs for efficiency, it may just be to different degrees.

Panfil: There are different regional agency requirements, different governmental regulations that companies have to comply with. And so what we find, Dana, is that what our customers are trying to do is normalize their designs. I won’t say they are standardizing their design because standardization says I am going to deploy exactly the same way everywhere in the world. I am a fan of Kit Kats and Kit Kats are not the same globally, they vary by region, the same is true for data centers.

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/

So, when you look at how the customers are trying to deal with the regional and agency differences that they have to live with, what they find themselves doing is trying to normalize their designs as much as they possibly can globally, realizing that they might not to be able to use exactly the same power configuration or exactly the same thermal configuration. But we also see pockets where different technologies are moving to the forefront. For example, China has data centers that are running at high voltage DC, 240 volts DC, we have always had 48-volt DC IT applications in the Americas and in Europe. Customers are looking at three things -- speed, speed, and speed.

And so when we look at the application, for example, of DC, there used to be a debate, is it AC or DC? Well, it’s not an “or” it’s an “and.” Most of the customers we talk to, for example, in Asia are deploying high-voltage DC and have some form of hybrid AC plus DC deployment. They are doing it so that they can speed their applications deployments.

In the Americas, the Open Compute Project (OCP) deploys either 12 or 48 volts to the rack. I look at it very simply. We have been seeing a move from 2N architecture to N plus 1 architecture in the power world for a decade, this is nothing more than adopting the N plus 1 architecture at the rack level versus the 2N architecture at the rack level.

And so what we see is when folks are trying to, number one, increase the speed; number two, increase their utilization; number three, lower their total cost, they are going to deploy infrastructures that are most advantageous for either the IT appliances that they are deploying or for the IT applications that they are running, and it’s not the same for everybody, right Steve?

You and I have been around the planet way too many times, you are a million miler, so am I. It’s amazing how a city might be completely different in a different time zone, but once you walk into that data center, you see how very consistent they have gotten, even though they have done it completely independently from anybody else.

Madara: Correct!

Consistency lowers costs and risks 

Gardner: A lot of what we have talked about boils down to a need to preserve speed-to-value while managing total cost of utilization. What is there about these multiple trends that people can consider when it comes to getting the right balance, the right equilibrium, between TCO and that all important speed-to-value?

Madara: Everybody strives to drive cost down. The more you can drive the cost down of the infrastructure, the more you can do to develop more edge applications.

I think we are seeing a very large rate of change of driving cost down. Yet we still have a lot of stranded capacity out there in the marketplace. And people are making decisions to take that down without impacting risk, but I think they can do it faster.
Standardization helps drive speed, whether it's normalization or similarity. What allows people to move fast is to repeat what they are doing instead of snowflake data centers, where every one is different.

Peter mentioned standardization. Standardization helps drive speed, whether it’s normalization or similarity. What allows people to move fast is to repeat what they are doing instead of snowflake data centers, where every new one is different.

Repeating allows you to build a supply base ecosystem where everybody has the same goal, knows what to do, and can be partners in driving out cost and in driving speed. Those are some of the key elements as we go forward.

Gardner: Peter when we look to that standardization, you also allow for more seamless communication from core to cloud to edge. Why is that important, and how can we better add intelligence and seamless communication among and between all these different distributed data centers?

Panfil: When we normalize designs globally, we take a look at the regional differences, sort out what the regional differences have to be, and then put a proof of concept deployment. And out of that comes a consistent method of procedure.

When we talk about managing the data center effectively and efficiently, first of all, you have to know what you have. And second, you have to know what it’s doing. And so, we are seeing more folks normalizing their designs and getting consistency. They can then start looking at how much of their available capacity from a design perspective they are actually using both on a normal basis and on a peak basis and then they can determine how much of that they are willing to use.

We have some customers who are very risk-averse. They stay in the 2N world, which is a 50 percent maximum utilization. We applaud them for it because they are not going to miss a transaction.

There are others who will say, “I can live with the availability that an N+1 architecture gives me. I know I am going to have to be prepared for more failures. I am going to have to figure out how to mitigate those failures.”

So they are working constantly at figuring out how to monitor what they have and figure out what the equipment is doing, and how they can best optimize the performance. We talked earlier about battery runtimes, for example. Sometimes they might get short or sometimes they might be long.

As these companies get into this step and repeat function, they are going to get consistency of their methods of procedure. They’re going to get consistency of how their operations teams run their physical infrastructure. They are going to think about running their equipment in ways that is nontraditional today but will become the norm in the next generation of data centers. And then they are going to look at us and say, “Okay, now that I have normalized my design, can I use rapid deployment configuration? Can I put it on a skid, in a container? Can I drop it in place as the complete data center?”

https://www.vertiv.com/en-us/about/news-and-insights/corporate-news/proliferation-of-hybrid-computing-models-among-2020-data-center-trends-identified-by-vertiv-experts/
Well, we build it one piece of equipment at a time and stitch it all together. The question that you asked about monitoring, it’s interesting because we talked to a major company just last month. Steve and I were visiting them at their site. And they said, “You know what? We spend an awful lot of time figuring out how our building management system and our data exchange happens at the site. Could Vertiv do some of that in the factory? Could you configure our data acquisition systems? Could you test them there in the factory? Could we know that when the stuff shows up on site that it’s doing the things that it’s supposed to be doing instead of us playing hunt and peck to figure out what the issues are?”

We said, “Of course.” So we are adding that capability now into our factory testing environment. What we see is a move up the evolutionary scale. Instead of buying separate boxes, we are seeing them buying solutions -- and those solutions include both monitoring and controls.

Steve didn’t even get a chance to mention the industry-leading Vertiv Liebert® iCOM™ control for thermal. These controls and monitoring systems allow them to increase their utilization rates because they know what they have and what it’s doing.

Gardner: It certainly seems to me, with all that we have said today, that the data center status quo just can’t stand. Change and improvement is inevitable. Let’s close out with your thoughts on why people shouldn’t be standing still; why it’s just not acceptable.

Innovation is inevitable 

Madara: At the end of the day, the IT world is changing rapidly every day. Whether in the cloud or down at the edge, the IT world needs to adjust to those needs. They need to be able to be cut out enough of the cost structure. There is always a demand to drive cost down.

If we don’t change with the world around us, if we don’t meet the requirements of our customers, things aren’t going to work out – and somebody else is going to take it and go for it.

Panfil: Remember, it’s not the big that eats the small, it’s the fast that eats the slow.

Madara: Yes, right.

Panfil: And so, what I have been telling folks is, you got to go. The technology is there. The technology is there for you to cut your cost, improve your speed, and increase utilization. Let’s do it. Otherwise, somebody else is going to do it for you.


Listen to the podcast. Find it on iTunes. Read a full transcript or download a copy. Sponsor: Vertiv.

You may also be interested in: